
 

 
Figure S1. DNABERT models generalized well on different datasets. (a), (b), (c), and (d) 

respectively represent the accuracy, F1 score, recall, and precision of DNABERT models 

trained from one dataset and tested on other unseen datasets. If the model was trained and 

tested using an identical dataset (the elements on the diagonal line starting from the lower left 
corner to the upper right corner), only testing data was used for evaluating the model.  



 

 

Figure S2. Performance differences between the original test dataset and all the other 
datasets. (a)-(d) shows the performance differences of CNN models, while (e)-(h) shows the 
performance differences of DNABERT models. The performance difference is the difference 
relative to the base performance, where the base performances are the performance of 
models trained and tested using partitions derived from the same dataset. 



 

 
Figure S3. General sequence features used in predicting eccDNAs include GC content 
and dinucleotide frequencies. The distribution of GC content and dinucleotide (AA, AT, CC 
and CG) frequencies were obtained for every DNA sequence predicted by the CNN models 
across every dataset used in this study. The results showed that DNA sequences predicted to 
be eccDNAs exhibited higher GC content, compared to the ones predicted to be non-
eccDNAs. In addition, DNA sequences predicted to be eccDNAs contained higher 
frequencies of dinucleotides with at least one guanine or cytosine and lower frequencies for 
dinucleotides with at least one adenine or thymine.  



 

 
Figure S4. Performance of the CNN in predicting eccDNAs of various lengths. (a), (b), 
(c) and (d) respectively represent the accuracy, F1 score, recall, and precision of the CNN 
(bar plots, labels on the left) and proportions of eccDNAs within bins of lengths (line plots, 
labels on the right).  



 

 
Figure S5. Length distribution of DNA sequences that are predicted to be eccDNAs and 
non-eccDNAs by CNN. The length distribution of eccDNAs and non-eccDNAs predicted by 

CNN models showed that the prediction was not biased by the coverage ratio of eccDNA to 

flanking regions.



 

 

Figure S6. Consensus eccDNA-related motifs identified in DNABERT models. (a) and 

(b) respectively represent the percentages of DNA sequences that were consistently 

predicted to be TP and TN among models trained on various datasets. (c) The consensus 

eccDNA-related motifs from the three sets were inferred for DNABERT models. Motifs 

identified in the “High-conf” set occurred in most of the datasets. The dot on the right of the 

motif indicates the source dataset from which the consensus motif was derived.  



 

 
Figure S7. Workflow for the identification of consensus eccDNA-related motifs. (a) 
Workflow for the identification of eccDNA-related motifs. For each dataset, we used the “High-
conf” set of TN as background sequences and inferred three sets of motifs that are 
overrepresented in the “High-conf” set of TP, “Cell” set of TP, and “Tissue” set of TP, 
respectively [1]. Afterwards, we kept the top 5 motifs with the highest number of matching 
sequences within each set of motifs. (b) Workflow for identification of consensus eccDNA-
related motifs. As an example, here we showed that the “Cell” set of motifs, “Tissue” set of 
motifs, and “High-conf” set of motifs from two different datasets was combined and clustered 
by RSAT to obtain consensus eccDNA-related motifs representing each category of motifs 
[2]. The hierarchical clustering was performed with average linkage using width-normalized 
scores (Ncor), as the motif comparison matrices. Ncor ≥ 0.4 was used as a threshold to 
partition the tree generated from clustering. To obtain the non-redundant set of motifs that 
encompasses all motifs within each set, we inferred the consensus motif of each 
representative cluster by averaging the frequencies of the descendant motifs. The 
representative clusters were defined as clusters encompassing motifs derived from more than 
half of the corresponding datasets, i.e. ≥ 6, ≥ 4, ≥ 3 different datasets for “High-conf”, “Cell” 
and “Tissue” sets, respectively.  



 

 

Figure S8. Results of motif scanning in eccDNA sequences. EccDNA sequences were 

scanned using motifs identified in this study by using FIMO [3]. The result with a p-value ≤ 

0.0001 was deemed as significant. The values of heatmaps show the proportion (%) of 

sequences with ≥ 1 occurrence of the specific motif. (a) False negatives predicted by 

individual model were scanned with consensus motifs. The heatmap shows that consensus 

motifs occur in < 4.58% of false negatives for all datasets. (b) We selected the dataset-

specific motifs by choosing motifs identified in the CNN models that maximize differences in 
occurrences (motifs that have the highest occurrences in the corresponding dataset but 

lowest occurrences in other datasets). By scanning eccDNAs in the testing data, we showed 

that the dataset-specific motifs are not enriched in the corresponding datasets, indicating 

there is little tissue-specificity in eccDNAs.  



 

 

Figure S9. Numbers of eccDNAs overlapping epigenetic marks. To identify the epigenetic 

features associated with eccDNAs, firstly, we downloaded the bed files of the epigenetic 

marks including peaks identified in the histone chromatin immunoprecipitation followed by 



 

sequencing (ChIP-seq) and DNase I hypersensitive sites sequencing (DNase-seq) of PC-3 

(accession number: ENCSR052AWE, ENCSR946QFD, ENCSR826UTD, ENCSR881TWJ, 

ENCSR849APH, ENCSR566UMF, ENCSR788EQL, ENCSR275NCH, ENCSR197QXT, 

ENCSR943LZX, ENCSR339ZMJ and ENCSR764KFK) and HeLaS3 (accession number: 
ENCSR000ENO, ENCSR959ZXU, ENCSR000EJS, ENCSR000EJT, ENCSR000AQN, 

ENCSR000AOC, ENCSR000DTY, ENCSR000AOD, ENCSR000APW, ENCSR000AOE, 

ENCSR000DUA, ENCSR000AOG, ENCSR000AOH) from the ENCyclopedia Of DNA 

Elements (ENCODE, https://www.encodeproject.org/)[4]. We further counted the number of 

eccDNAs overlapping epigenetic marks with at least one base pair. After obtaining the 

numbers of eccDNAs overlapping each epigenetic mark, we partitioned the eccDNAs into 

disjoint sets and displayed the results of PC-3 (a) and HeLaS3 (b) dataset on the above 

figure. Every dot on the figure represents the subset of eccDNAs fitting specific criteria (not 
overlapping any epigenetic mark or overlapping a specific type of epigenetic mark) and only 

the subset with over 100 eccDNAs was displayed on the plot. The columns of the plot 

correspond to the subsets and the rows correspond to the types of epigenetic marks. The 

numbers at the top panel of the plot show the numbers of eccDNAs corresponding to the 

subsets and the numbers at the left panel show the numbers of eccDNAs overlapping the 

corresponding epigenetic mark. Here shows that over half of the eccDNAs within the two 

datasets do not overlap any epigenetic marks (PC-3, 57.48%; HeLaS3, 62.83%).  



 

 

Figure S10. Length distribution of eccDNAs used in this study.!85.53% eccDNAs have 

length ≤1000 bp on average per dataset.



 

 

Figure S11. The performance of CNN models with 2, 3, 4 and 5 convolutional layers 
evaluated across all datasets. (a), (b), (c), and (d) represent the accuracy, F1 score, recall, 

and precision, respectively.  



 

Table S1. Human DNA binding motifs in CIS-BP were queried to identify similar motifs. 
The first consensus eccDNA-related motif in the “High-conf” set of CNN models was used to 

query CIS-BP 2.00 human database for identification of similar motifs using Tomtom [5,6]. It 

was found that the top 10 most similar motifs (according to the E-value, where the E-value 
indicates the expected number of false positives in the database) all belong to the zinc-finger 

protein family. 

Motif ID Alignment of query motif to target motifs  
(target motif is shown as the logo above the query motif) 

E-value 

M07609_2.00 
(ZNF496) 

 

8.82e-06 

M07587_2.00 
(ZNF304) 

 

3.90e-01 

M08388_2.00 
(ZNF770) 

 

4.13e-01 

M07734_2.00 
(ZNF311) 

 

2.27e+00 

M07658_2.00 
(ZNF571) 

 

2.29e+00 

M08080_2.00 
(ZEB2) 

 

2.40e+00 

M07639_2.00 
(ZNF417) 

 

3.07e+00 

M08344_2.00 
(ZNF449) 

 

3.07e+00 

M07772_2.00 
(ZNF550) 

 

3.22e+00 

M08293_2.00 
(KLF1) 

 

3.45e+00 

 

  



 

Table S2. The comparison of prediction results of CNN and DNABERT models. The TP, 

FN, TN, and FP predicted by CNN and DNABERT models were compared to assess 

consistency of the two models. By taking the union or intersection of the prediction results, 

performance could be further improved. 

  Prediction results  Mode of integration 

 % positive % negative Union Intersection 

CNN TP TP FN FN TN TN FP FP 

Acc Rec Pre Acc Rec Pre DNABERT TP FN TP FN TN FP TN FP 

C4-2 74 8 17 2 70 15 12 3 98 98 77 97 74 96 

LnCap 77 9 13 1 63 16 17 4 97 99 73 96 77 95 

PC-3 74 10 14 2 71 14 13 2 98 98 77 97 74 97 

OVCAR8 79 7 13 1 64 17 15 4 97 99 73 96 79 95 

ES2 76 8 14 2 61 19 15 5 97 98 72 96 76 94 

HeLaS3 65 9 23 3 68 16 13 3 97 97 75 96 65 95 

Muscle 60 15 20 5 56 18 19 6 94 95 68 91 60 90 

Leukocytes 56 17 21 7 48 19 24 10 92 93 64 86 56 85 

Lung-normal 65 11 20 4 64 16 16 4 96 96 73 95 65 94 

Lung-tumor 57 10 28 5 68 16 13 3 96 95 75 94 57 95 
  



 

Table S3. Number of sequences of datasets. 

Dataset 
Number of sequences 

 
Proportion (%) 

Total "#$%&'!(!)***!+, 

C4-2 59713 49720 83.26 

LnCap 129220 123350 95.46 

PC-3 21030 19387 92.19 

ES2 171943 166919 97.08 

OVCAR8 77409 71886 92.87 

U937 62982 58266 92.51 

HeLaS3 33808 24921 73.71 

Lung-normal 139864 111786 79.92 

Lung-tumor 208330 169685 81.45 

Leukocytes 4144 3328 80.31 

Muscle 35092 25286 72.06 



 

Table S4. Parameters of DNABERT models. Training batch size was fixed to 4 because of 
limited memory. Training epoch, logging steps, and save steps were adjusted with the size of 
datasets. Other parameters including warmup percentage, dropout probability, and weight 
decay were fixed to 0.1, 0.1, and 0.01, respectively, as they have little effect on performance. 
We tuned the learning rate between 0.00001 to 0.00005 and picked the one with the best 
performance. 

Dataset 
Parameters 

training epoch logging steps save steps learning rate 

C4-2 2 4000 10000 0.00004 

ES2 1 7000 20000 0.00002 

HeLaS3 2 3000 9000 0.00003 

leukocytes 4 1300 5000 0.00003 

LnCap 1 6000 15000 0.00003 

muscle 2 3000 9000 0.00003 

OVCAR8 2 6000 15000 0.00002 

PC-3 2 3000 7000 0.00004 

Lung-normal 1 4000 21500 0.00003 

Lung-tumor 1 5000 30000 0.00002 

U937 2 5000 12000 0.00002 
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